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Angular-Dependent Radius Measurements at

Rotating Objects Using Underdetermined

Sensor Systems
Andreas Fischer, Member, IEEE

Abstract— Precise and contactless shape measurements of
rotating objects is important, e.g., for monitoring and controlling
the manufacturing quality in lathes. For this purpose, multisensor
and single-sensor approaches based on optical distance and

surface velocity measurements are state-of-the-art techniques.
Two- and single-sensor systems are particularly promising to
measure the angular-dependent radius of the cross section of
the rotating object in a scanning regime with minimal optical
access. Since a comparison between the different sensor systems
is missing, the potential of these underdetermined sensor systems
is unclear. In addition, displacements of the rotational axis and
sensor misalignments are suspected to be crucial error sources,
but the error is unknown. For this reason, an error analysis
is performed regarding the resulting systematic error and the
random error for the two- and single-sensor systems. As a result,
the different sensor systems have an equal cross-sensitivity with
respect to lateral displacements of the rotational axis from the
sensor axes, but the two-sensor approach has the lowest sensitivity
regarding sensor misalignments. For the studied measurement
conditions, the systematic error dominates the sensor noise for the
two-sensor system and the single-sensor system with combined
distance and velocity measurement at an object mean radius
>6 mm. The smallest total measurement uncertainty is obtained
with the two-sensor system. Finally, the relevance of systematic
error depends on the utilization, i.e., for instance on the absolute
rotor radius, the stability of the rotor axis, the sensor position,
the accuracy of the sensor alignment, and the uncertainty of the
distance and/or velocity measurements.

Index Terms— Inverse problem, measurement uncertainty,
optical radius measurement, shape measurement, systematic and
random errors.

I. INTRODUCTION

O
PTICAL in situ shape measurements of rotating objects

with micrometer and submicrometer precision are

required, e.g., for monitoring the machining process in

lathes [1], [2] or the deformation of rotors with new materials

such as composite materials in rotor test rigs [3]. The main

challenge is to measure the 2-D shape, i.e., the cross section

of the rotating object perpendicular to the rotational axis,

because 3-D shape measurements can then be achieved by

scanning along the height axis. In order to cope with the
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large object’s diameter, which is usually more than five orders

of magnitude larger than the desired resolution [4], [5], and

due to limited space and limited optical access, systems

with multiple distance sensors are applied. A multisensor

system with N ∈ N equally spaced sensors along a virtual

circle around the measurement object is depicted in Fig. 1(a).

A huge variety of applicable distance sensors exist such as

intensity-based sensors, triangulation sensors, time-of-flight

sensors, confocal sensors, and interferometric sensors [6], [7].

In addition, interferometric laser Doppler distance sensors

were developed, which are based on the speckle effect and

are well-suited for optically rough surfaces and high surface

velocities or high rotor speeds, respectively [8]–[10]. Further

measurement principles exist in particular for the diameter

measurement of round objects, which evaluate the optical

diffraction pattern behind the measurement object [11], [12].

Multisensor systems can measure arbitrary shapes by scan-

ning the angular-dependent radius of the object during the

rotation [4]. However, this circumferential scanning requires

a no whirling assumption, i.e., the unknown movement of the

rotational axis is considered to be negligible. If whirling occurs

the measurement system is undetermined and thus the mea-

surement uncertainty increases [3]. The minimal configuration

of a multisensor system is a two-sensor system where the

sensors are located oppositely. For this configuration, only a

displacement of the rotational axis perpendicular to the sensor

axes leads to a respective measurement error.

If the shape is not arbitrary, but can be determined from N

points in space, it is possible to determine the object shape

without scanning by applying a multisensor system with N

sensors. For instance, a circular shape requires at least three

sensors [13] and an elliptical shape requires at least five

sensors [3]. The subsequent investigation focuses on the scan-

ning techniques. However, if the minimal necessary number

of sensors is not feasible (for instance, due to the limited

access) or an unwanted setting, the no whirling assumption

is applicable or the unpredictable movement of the rotational

axis will also lead to a measurement error.

A single-sensor system with a single distance sensor min-

imizes the number of optical accesses, but lateral and axial

displacements of the rotational axis with respect to the sensor

axis cause errors. Moreover, it is crucial to know the initial

axial axis position precisely. In order to overcome this limita-

tion, it is beneficial to derive the object radius from the known

rotational frequency and a measurement of the tangential

surface velocity, because the velocity is not affected by axial
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Fig. 1. Shape measurement of rotating objects using (a) N distance
sensors (multisensor system) and (b) single sensor that measures distance
and surface velocity simultaneously (single-sensor system). The rotational
frequency is frot . The x marks the rotational axis.

displacements of the rotational axis [14]. Note that this single-

sensor system is still underdetermined under general whirling

conditions with lateral axis displacements.

A more precise single-sensor system was developed [15]

and applied in lathes [2] where the sensor-surface distance

and the tangential surface velocity are measured simultane-

ously [see Fig. 1(b)]. Using the known rotational frequency,

the mean value of the velocity measured over one revolution

allows to determine the mean radius of the object, and the

radial deviations from a circular shape with such a mean radius

follow from the distance measurements. Hence, the initial axial

position of the rotational axis is not required. However, the

effect of rotor axis displacements remains to be investigated.

For the shape measurement with underdetermined multi-

sensor and single-sensor systems, the whirling motion or the

displacement of the rotational axis results in a measurement

error. However, the error magnitude is an open question. Even

more important, a comparison between the respective benefits

and drawbacks of the different measurement approaches is

missing. The same is true regarding sensor misalignments,

because the imperfect alignment of multiple sensors is sus-

pected to cause a significant contribution to the measurement

uncertainty.

Due to these reasons, a fundamental model-based compar-

ison has been undertaken between the two-sensor approach

based on two distance sensors, the single-sensor approach

based on a velocity sensor, and the single-sensor

approach based on a combined velocity and distance sensor.

First, the different measurement principles and the respective

model equations to determine the angular-dependent radius of

the rotating object are explained in Section II. The different

measurement approaches are then compared regarding the ran-

dom errors due to the sensor noise in Section III. Subsequently

in Section IV, the systematic error due to displacements

of the rotational axis and due to sensor misalignments are

calculated and discussed by means of a simulation. The

article closes by summarizing the key findings in Section V.

II. MEASUREMENT PRINCIPLES

A. Two-Sensor System

The case of two distance sensors is considered similar to

the sketch in Fig. 1(a), where N = 2. The angular distance

between both sensors amounts to π , i.e., the two sensors are

aligned at opposite sides. In this particular case, the sensor

axes are antiparallel and intersect the rotational axis.

The radius r of the object at the observed angle is obtained

from the two measured distances z1, z2 and the diameter D

of the calibration object (for which the distance signals were

set to zero)

r =
1

2
(D − (z1 + z2)). (1)

The angular-dependent radius of the object is determined from

repeated measurements during the rotation with known angles.

An axial displacement of the rotational axis does not disturb

the measurement, because the evaluated sum z1 + z2 of the

sensor signals is not affected. However, a cross-sensitivity with

respect to the lateral displacement of the rotational axis exists.

B. Single-Sensor System (v)

The case of a single sensor corresponds to the sketch in

Fig. 1(b), but only the lateral velocity v of the object surface

is measured here.

Assuming that the sensor axis intersects the rotational axis,

the radius of the rotating object is measured by calculating

r =
v

2π frot
(2)

with frot as known rotational frequency. As for the two-sensor

approach, the angular-dependent radius of the object results

from the repeated measurement.

An axial displacement of the rotational axis has no effect

on the velocity and thus no effect on the radius measurement.

A lateral displacement of the rotational axis disturbs the

measurement.

C. Single-Sensor System (v, z)

The single-sensor approach with a combined velocity and

distance measurement is depicted in Fig. 1(b). According to

the underlying measurement principle, the object radius r is

divided into the object mean radius R and the radial deviation

r� = r − R from the mean radius

r = R + r�. (3a)

According to (2), the object mean radius is obtained from the

mean velocity V measured over one revolution by the relation

R =
V

2π frot
. (3b)
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The radial deviation results from the distance measurement z

by calculating

r� = −(z − Z) (3c)

where Z is the mean distance of the measured object over one

revolution.

The measurement principle is based on the assumption

that the movement of the rotational axis along the sensor

axis is negligible with respect to the distance measurement

uncertainty. A constant axial displacement of the rotational

axis has no effect on the measurement result, whereas lateral

axis displacements always have.

III. RANDOM ERROR

The different measurement approaches are compared with

respect to the measurement uncertainty resulting from random

sensor errors. For this purpose, an error propagation calcu-

lation is applied to the model equations (1)–(3) derived in

Section II. The calibration uncertainty is assumed negligible

in all discussed cases. The standard uncertainty of the dis-

tance and the velocity measurement is denoted by u(z) and

u(v), respectively. In order to complement the findings by

quantitative results, the typical values u(z) = 2 µm [16] and

u(v) = 0.2% [8] are applied below. Using a laser Doppler

velocimeter as velocity sensor, the relative velocity uncertainty

is usually constant [17].

For the two-sensor system (1), the standard deviation of the

angular-dependent radius that results from an error propagation

calculation amounts to

u(r) =
1

√
2

u(z) (4)

because the distance signals of both sensors are uncorrelated.

Hence, the magnitude of the radius uncertainty is almost equal

to the uncertainty of the distance sensors. This means a typical

radius uncertainty in the order of 2 µm.

The model of the single-sensor approach based on velocity

measurements (2), leads to

u(r) =
1

2π | frot|
u(v) = r

u(v)

|v|
. (5)

As a result, the radius uncertainty is directly proportional to

the object radius. Consequently, the single-sensor approach is

superior to the two-sensor system for objects with a small

radius, namely, if r < u(z)(1/
√

2/u(v)/|v|). For the typical

uncertainty values, the limiting radius size reads 0.5 mm.

Since the object radius is in general larger, the single-sensor

approach suffers from a comparatively high uncertainty.

For the single-sensor approach with the combined velocity

and distance measurement, an error propagation applied to the

model (3) gives the radius standard deviation

u(r) =

√

(

r
u(v)

|v|

)2

·
1

M
+ u(z)2 ·

(

1 +
1

M

)2

+

+
u(z)2

M2
· (M − 1)

≈

√

(

r
u(v)

|v|

)2

·
1

M
+ u(z)2, M � 1. (6)

Fig. 2. Standard deviation of the angular-dependent object radius r with
respect to the object radius for the considered measurement approaches. The
results follow from an uncertainty analysis according to the international guide
to the expression of uncertainty and using the parameters u(z) = 1 µm,
(u(v)/|v|) = 0.1%, M = 100.

Note that a sensor configuration is considered where no

correlation between the distance and the velocity measurement

values occurs. The symbol M denotes the number of acquired

samples of the sensor output signals while the object is

rotating. Here M velocity values and M distance values are

used for the radius measurement. For sufficiently large M ,

the influence of the velocity uncertainty is smaller than the

influence of the distance uncertainty. Since the remaining

contribution from the distance uncertainty is typically smaller

than the uncertainty for the single-sensor approach without

additional distance measurement (u(z) < r (u(v)/|v|)), the

combined distance and velocity measurement is identified as

the better suited method based on the presented comparison

for random error sources.

When comparing with the two-sensor approach, however,

the extended single-sensor approach turns out to be always

less precise. The characteristic object radius for which the

uncertainty becomes, for instance,
√

2u(z) (i.e., a factor

of
√

2 larger than using a single distance sensor) is

u(z)(
√

M/u(v)/|v|). Assuming M = 100, this characteristic

radius amounts to 10 mm.

In order to summarize the behavior of the three measure-

ment settings, the radius standard deviation is shown in Fig. 2

over the object radius. Note that the measurement uncertainty

due to random errors can be reduced by evaluating multiple

revolutions.

IV. SYSTEMATIC ERROR

All measurement approaches have a cross-sensitivity with

respect to a lateral displacement of the rotational axis. The

same holds for sensor misalignments. The underdetermined

two- and single-sensor approaches require the rotational axis

to intersect the sensor axis. The condition is not fulfilled either

if the rotational axis shows a displacement or if the sensor

alignment is not as intended. These cases are discussed in

Sections IV-A and IV-B, respectively.

In order to quantify the resulting measurement errors,

a MATLAB simulation based on the model equations in

Section II and the geometry of the measurement arrangement
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Fig. 3. (a) Lateral displacement d of the rotational axis and (b) resulting
systematic error �r normalized by the radius R of the circular object as a
function of the normalized displacement d/R. The error applies for the two-
sensor system as well as for both single-sensor systems.

is performed. For simplification, the object shape is assumed

to be circular with the radius r = R and the displace-

ments or misalignments are assumed to be constant during one

rotor revolution. As a result, z − Z = 0 in (3) and, thus, both

single-sensor approaches give equal results. For this reason,

it is only distinguished between the two- and the single-sensor

approach in this section.

A. Displacement of the Rotational Axis

The case of a lateral displacement d of the rotational

axis and the resulting systematic error are shown in Fig. 3.

Surprisingly, the systematic error is the same for the two- and

single-sensor approaches. Considering, for instance, a relative

displacement of (d/R) = 5%, the systematic error amounts

to �r = 0.1% · R, which means already �r = 2 µm for

R = 2 mm. Since the object radius is typically larger, such

lateral displacements are in general not negligible compared

to the sensor uncertainty. However, this conclusion has to

be drawn separately for each application with the respective

displacement d .

B. Sensor Misalignment

In general, an axial sensor misalignment leads to a mea-

surement error for the two-sensor system. According to an

error propagation calculation applied to (1), the resulting error

is �r = −(1/2)(�z1 + �z2). The error only vanishes for

�z1 = −�z2. On the contrary, no error results for the single-

sensor systems.

Lateral sensor misalignments lead to a systematic error for

all measurement approaches. Since the sensor displacement

Fig. 4. (a) Lateral displacement d of one sensor and (b) resulting systematic
error �r normalized by the radius R of the circular object as a function of
the normalized displacement d/R.

can be interpreted as a respective opposite displacement of

the rotational axis, the error discussed in Section IV-A results.

This statement holds for both single-sensor settings as well as

for the two-sensor system when the displacement of the two

sensors is equal [see Fig. 3(a)]. However, for the two-sensor

system, the displacement of each sensor can be different. As an

example, the scenario of one misaligned sensor is presented

in Fig. 4. The absolute value of the resulting error for the

two-sensor approach is lower than for two equally misaligned

sensors (see Fig. 3), and lower than for an equally misaligned

sensor using the single-sensor approaches.

The sensor misalignment can also mean a tilt of the sensor

axis [see Fig. 5(a)]. Note that the resulting error depends on

the angular displacement α as well as the radial position L of

the sensors (or the relative object radius R/L, respectively).

As an example, the error is shown in Fig. 5(b) with respect

to the angular displacement for the measurement arrangement

L = 2 R. The two-sensor approach has a lower cross-

sensitivity than the single-sensor approaches. For a typical

angle α = 2°, e.g., the error amounts to −0.06% · R and

−0.25%·R, respectively. Hence, the absolute value of the error

amounts 2 µm for R = 3.3 and 0.8 mm, respectively. Since the

objects are usually larger, the angular displacement of a sensor

can mean a serious contribution to the shape measurement

uncertainty.

C. Combined Uncertainty

In order to demonstrate the significance of the systematic

error or the random error, respectively, the combined uncer-

tainty is shown in Fig. 6 over the mean object radius together

with the random error from Fig. 2. As systematic error, a
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Fig. 5. (a) Angular misalignment α of one sensor and (b) resulting systematic
error �r normalized by the radius R of the circular object. Note that L = 2 R

is applied here as an example.

Fig. 6. Combined standard uncertainty of the object radius r with respect to
the object mean radius R for a relative unknown systematic error of ±0.06%
(two-sensor system) and ±0.25% (single-sensor systems), respectively, due to
an angular misalignment of the sensor located at L = 2 R (see Fig. 5), and for
the random error shown in Fig. 2. The combined standard uncertainty (thick
curves) is compared with the contribution from the random error (thin curves).

relative error of ±0.06% is considered for the two-sensor

system, and a relative error of ±0.25% is taken into account

for both single-sensor settings. These errors correspond to an

angular sensor misalignment of ±2°for a sensor position at

L = 2 R [see Section IV-B, Fig. 5(a)].

As a result for the single-sensor setting with the velocity

evaluation, the contribution from the random error to the

measurement uncertainty is larger than the contribution from

the systematic error in the shown range of the mean object

radius. In contrast to this behavior, the random error is

negligibly small for the single-sensor setting with velocity

and distance measurement as well as for the two-sensor

setting considering large mean object radiuses R > 2 mm

and R > 6 mm, respectively. Hence, the systematic error

typically dominates the total measurement uncertainty at large

measurement objects. Furthermore, the lowest total uncertainty

is obtained with the two-sensor approach.

V. CONCLUSION

The investigated single-sensor settings offer the lowest

requirements with respect to the optical access and the number

of sensors to be aligned. On the other hand, the measurement

uncertainty of the angular-dependent object radius resulting

from the typical uncertainties of the sensor signals is minimal

for the two-sensor system. In particular, the radius measure-

ment uncertainty is independent of the object radius for a

two-sensor system, but is increasing with the object radius

for both single-sensor systems. Furthermore, the single-sensor

setting with the combined measurement of the lateral surface

velocity and the surface distance was shown to be superior

to the single-sensor setting with the sole measurement of the

surface velocity.

Sensor misalignments and displacements of the rotational

axis can occur, which contribute to the radius measurements

uncertainty of underdetermined measurement systems. Such

underdetermined systems are, e.g., the two-sensor system

based on distance measurements, the single-sensor system

based on velocity measurements, and the single-sensor system

based on combined velocity and distance measurements. While

the two-sensor system is affected by axial and lateral dis-

placements of the rotational axis, both single-sensor systems

are only disturbed by lateral displacements (as long as the

axial displacement during one rotor revolution is negligible).

The cross-sensitivity regarding a lateral displacement of the

rotational axis is equal for all three sensor systems. Regarding

sensor misalignment issues, however, the two-sensor system

is superior to the single-sensor systems. For the single-sensor

settings, only a single sensor has to be aligned, but the align-

ment requirements are higher than for the two-sensor setting.

The misalignment of the sensors and the displacement of the

rotational axis cause systematic errors, which can dominate

the overall radius measurement uncertainty at measurement

objects with a large mean radius. Using the described error

analysis, the influence of random and systematic errors can

now be determined for each application. Vice versa, the exper-

iment can now be designed to achieve the desired accuracy by

formulating (and then realizing) the necessary requirements

with respect to the rotor axis stability, the alignment of the

sensors and the uncertainty of the sensors. Furthermore, future

studies should focus on multisensor systems with more than

two sensors.
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